Spring 2019
Time: Wednesday 3:00 – 4:50 pm
Room 2083NHB
Section AD9

Instructors: Dr. Carla E. Cáceres
Professor, Department of Animal Biology
Director, School of Integrative Biology
Lynn M. Martin Professorial Scholar
477 Morrill Hall, caceres@life.illinois.edu
244-2139
Office Hours—by appointment

Dr. Ben Clegg
Teaching Assistant Professor, School of Integrative Biology
2006a Natural History Building
ib150@life.illinois.edu
Office Hours – TBA

Webpage: Moodle
(https://learn.illinois.edu/auth/shibboleth/gateway.php)

Overview:
Welcome to the James Scholar Section of IB 150! In this section, we will spend time each week focusing on the following three main goals:

1) Increasing your skills related to scientific literacy
2) Identifying “Grand Challenges” in Biology and explaining how scientists (including undergraduates) at UIUC are working to address them
3) Recognizing resources available at UIUC that will aid you in solving grand challenges and training you to be future leaders in scientific literacy

You will be responsible for completing all assignments given to you in IB 150. You will also receive additional James Scholar homework.

To receive your James Scholar designation you must complete an Electronic Honors Credit Learning Agreement (EHCLA).

General Course Policies: The course follows all policies and expectations outlined in the Student Code http://admin.illinois.edu/policy/code/.

Accommodations: Please notify Dr. Cáceres and Dr. Clegg (the sooner the better) if you require special accommodations. University policy regarding special accommodations is listed in Article I-110 of the Student Code.

Academic Integrity/Plagiarism: Article I, Part 4 of the Student Code explains the University (and course) Policy on Academic Integrity. Section I-401 b states “Students have been given notice of this rule by virtue of its publication. Regardless of whether a student has actually read this rule, a student is charged with knowledge of it. Ignorance of a rule is never a defense.” If there is anything in the Student Code that you feel you do not fully understand, please contact your instructor.
Structure and expectations: All students will attend one class each week. The learning will be as active as possible. For some weeks, you will also be given a reading assignment and on-line assignment to be completed prior to coming to class. Attendance is required and you will not be allowed to complete the in-class assignments associated with unexcused absences. Excused absences are given for observing a religious holiday that falls on the day of the class, a medical emergency or tragedy in your immediate family or serving as a volunteer emergency worker as defined in the Volunteer Worker Job Protection Act. Please let us know in advance if you will miss a class to observe a religious holiday. All other requests for an excused absence must be accompanied by documentation from the Student Attendance Center. If you miss an assignment as the result of an excused absence, you will be allowed to complete a make-up assignment. Depending on the length of your absence, we will determine the amount of time you have to complete the work. No credit will be given for assignments missed due to unexcused absences.

Please respect the learning environment of your classmates. Please refrain from activities that are disruptive or distracting to other students (talking, arriving late/leaving early, websurfing, watching videos, etc.). Be prepared to be an active participant in group activities.

Assignments: Points assigned from the discussion manual for IB 150 are required and will be applied in the calculation of your letter grade in IB 150.

The specific assignments of the James Scholar seminar are worth 250 points. You must earn at least 200 points to receive your honors credit. These additional points WILL NOT be used in the calculation of your IB 150 grade. You must complete an Electronic Honors Credit Learning Agreement (EHCLA).

In class work: 100 points, week 2 – week 9, and week 11: 10 points each week

Weekly paper summary 20 points

JS Semester project 130 points

DUE DATES FOR JS PAPER ARE LISTED IN MOODLE

Weekly homework: Each week (starting with week 2), by 11:55 pm on Tuesday, you will need to post a 2-3 sentence summary of current biological research that has been published in a peer-reviewed journal and is featured on the Science magazine news page (http://news.sciencemag.org/). Skills that you will practice here is finding and reading primary literature

Read the blog post and find the link to the recently published journal article. YOU MUST THEN FOLLOW THE LINK TO THE ACTUAL PAPER. If you can’t find the paper, pick another blog post.

Read the abstract of that journal article and compare it to the blog post. Write your own 2-3 sentence summary of the major findings of the paper. DO NOT simply copy text from either the blog post or the abstract. This is plagiarism and will be treated as such (see section on academic integrity).

We will show you where in Moodle to post your answers.

Another goal here is to teach you to cite scientific publications correctly. Each journal has a different style, and you may use the style of the journal in which your paper was published. BE SURE TO LOOK AT THE REFERENCES OF THE PAPERS YOU ARE CITING TO GET AN IDEA OF HOW TO CITE SCIENTIFIC PAPERS.

You must list:
The 1st author of the study (last name, followed by initials).
If only 2 authors, also list the second author. If > 2, list “et al.”
The year of the publication
The title of the article
The name of the journal
The volume of the journal
The page numbers (if actually in print). If not in print yet, list the DOI

Comment on one other summary.

Be sure you are selecting an article from the primary literature. Occasionally the blog posts will be about current events. These are not eligible for the homework.

Example:

The tools and technologies for genetic engineering continue to increase. Ostrov et al. made 62,214 DNA changes to a synthetic *E. coli* genome. They changed seven codons with their synonymous alternatives. The scientists determined that 91% of genes with these changes maintained their function in 91% and only 13 changes were lethal. One goal of this research is to create genomes with functions not typical found in nature.