Writing the self-contained universe

Hi all,

You are not sitting next to me right now as I type these ideas. You’re most likely not in New Jersey, and you might not even be in the U.S. The fact that it’s even possible for you to be reading these words right now highlights an ever-growing need to be able to communicate ideas through writing. It’s the difference between you growing bored and leaving halfway to explore other parts of the internet, and you finishing this blog post (before moving on to explore the rest of the internet!).

In essence, writing is just a means of getting info from Point A to Point B. No matter how many amazing and intelligent ideas you may have in your head, they will have to stay there if you don’t know how to communicate them. Here are a few tips on bridging the gap between you and your reader’s mind when it comes to e-mailing a professor or potential collaborator, writing a grant, or explaining your ideas in general.

1. Who is your reader? Why should they care about your message?
Example: e-mail
As often as possible, put yourself in the head of the person reading what you wrote. Let’s say you’re e-mailing a professor to potentially do a PhD with them. They’ll want to know:

– Who is this person? Is he/she currently an undergraduate? If not, what has she done since then?
– What are his research interests? Of my work, what interests him?
– What are her research qualifications? Has she done research before, or is she just applying to grad school because she hasn’t considered other options?
– Has this applicant actually read up about my lab and thinks he’s a good fit, or is he just sending a template e-mail to every researcher he can find?

The more of these you can answer, the more willing the professor will be to respond. Remember that professors are incredibly busy people. Chances are, they enjoy talking with new people and exchanging ideas. But, their schedules are so packed that the easier you can make an e-mail exchange for them, the less time they have to spend answering these questions themselves. You want a researcher to be nodding her head as she reads the e-mail, her questions being answered as she reads so that by the end, the work has been done for her and she can now focus on writing her response.

2. Does your writing actually address what you wanted to say / the prompt?
Example: grant writing, lab reports
Say you’re working on an NSF-GRFP grant (the National Science Foundation Graduate Research Fellowship). You have phenomenal research ideas that would explain a genetic basis for sociability in humans, and you have told a heartwarming story on how you discovered and decided to pursue science. A few months later, you’re surprised to find your revolutionary ideas were not funded by NSF. What happened?

It’s likely that you didn’t answer every part of the application to the degree NSF was looking for. Consider an introductory biology lab in which the students dissect fish and chicken hearts (diagrams on the right). In their report, they are asked to compare the two hearts and explain how these hearts differ in the ability to support different levels of metabolic demand. Unless they provide comparisons between the two hearts and explain how those differences affect ability to support varying metabolisms, they will not get full credit (no matter how detailed either component of their answers are). Think of it as:

10 points total:
5 – provide 3 differences between the 2 hearts
5 – explain each difference in terms of metabolic potential

You can slam dunk those first 5 points, but if you don’t address the second section, it’s likely you won’t even get a passing grade. Similarly, for the GRFP, regardless of how incredible your ideas are, if you don’t explain how your work has any relevance outside of bullet points in a textbook only people in your field will read, even the very best ideas will get passed down. Again, think from the GRFP officer’s viewpoint: every applicant has good ideas, but NSF wants research fellows who will not only advance science but also help spread its ideas beyond the scientific sphere. Even if you would do outreach if you had the opportunity, if you don’t write about it, the GRFP officer can’t assume you would.

3. If your writing was an isolated universe, would that universe make sense?
Example: course exam
This is one I repeatedly tell my introductory biology students for their lab reports and exams. Imagine your mom somehow stumbled across your biology midterm essays (of all the things she could have discovered in your room) and was reading them. Would she be able to understand what you wrote? In this situation, you have someone who most likely hasn’t taken college-level biology in a few decades, if ever. Do they get lost in your jargon, or is your answer self-contained enough for anyone to be able to pick it up and learn something from it? One of the biggest road blocks to a good scientific talk is losing your audience part way because you assume they understand something they actually don’t. Being able to grab a listener from any background and pull them to a new level of understanding is challenging, but it’s critical for teaching.

4. How long do you think your reader will spend on your writing? If they skimmed it, would they still get your message?
Example: lab report, scientific articles
Many science majors in college are under the misconception that a longer lab report is a better one. The idea, which seems reasonable at first, is that the more information you put down, the larger the net you are casting, which has a better chance of catching the answer your TA is looking for. Unfortunately, it’s not quite like that. Aside from giving yourself more opportunities to write something incorrect and actually lose points, in the scientific world you will almost never be in the situation where you’ve written everything you need and should keep writing more.

Again, think about writing as a communication of ideas. Short and sweet (i.e. efficient) is always preferable to long and winding in science. Scientific articles have abstracts so readers can get the gist of the article without needing the motivation, background, and time to read the entire thing (remember how busy many researchers are!). Articles in the journal Science actually have one-sentence summaries for the particularly busy and researchers in related fields who may want a simplified version of the abstract. Brevity is a much better skill to have than the ability to list everything you know about a topic.

Consider the reader, consider your miniature universe. And if all else fails, just call your reader on Skype.

Photo credits:
– Thinking: Basic College English blog (http://uppampangaenglish.blogspot.com)
– Chicken heart: University of Illinois at Urbana-Champaign Chickscope (http://chickscope.beckman.uiuc.edu/explore/embryology/day02/comparative.html)
– Fish heart: Stanford University Environmental Science Investigation (http://esi.stanford.edu/circulation/circulation5.htm)

Matt Grobis is a PhD student at Princeton University and an alumnus of the IB Honors program at the University of Illinois. For more information about academia advice, summaries of scientific articles, and discourses on metal music, check out mattgrobis.blogspot.com or e-mail him at matt.grobis[at]gmail[dot]com.

Fungus that causes white-nose syndrome in bats proves hardy survivor

Written by Diana Yates, Life Sciences Editor | 217-333-5802; diya@illinois.edu

CHAMPAIGN, Ill. — After taking an in-depth look at the basic biology of a fungus that is decimating bat colonies as it spreads across the U.S., researchers report that they can find little that might stop the organism from spreading further and persisting indefinitely in bat caves.

additional photoPhoto by L. Brian Stauffer

Graduate student Daniel Raudabaugh, left, and mycologist Andrew Miller, of the Illinois Natural History Survey, conducted the first in-depth study of the basic biology of P. destructans, the fungus that causes white-nose syndrome in bats.

Their report appears in the journal PLOS ONE.

The aptly named fungus Pseudogymnoascus (Geomyces) destructans causes white-nose syndrome in bats. The infection strikes bats during their winter hibernation, leaving them weakened and susceptible to starvation and secondary infections. The fungus, believed to have originated in Europe, was first seen in New York in the winter of 2006-2007, and now afflicts bats in more than two dozen states. According to the U.S. Fish and Wildlife Service, P. destructans has killed more than 5.5 million bats in the U.S. and Canada.

The fungus thrives at low temperatures, and spreads to bats whose body temperature drops below 20 degrees Celsius (68 degrees Fahrenheit) when they are hibernating in infected caves. Previous research has shown that the fungus persists in caves even after the bats are gone.

The new study, from researchers at the Illinois Natural History Survey at the University of Illinois, found that the fungus can make a meal out of just about any carbon source likely to be found in caves, said graduate student Daniel Raudabaugh, who led the research under the direction of survey mycologist Andrew Miller.

“It can basically live on any complex carbon source, which encompasses insects, undigested insect parts in guano, wood, dead fungi and cave fish,” Raudabaugh said. “We looked at all the different nitrogen sources and found that basically it can grow on all of them. It can grow over a very wide range of pH; it doesn’t have trouble in any pH unless it’s extremely acidic.”

“P. destructans appears to create an environment that should degrade the structure of keratin, the main protein in skin,” Raudabaugh said. It has enzymes that break down urea and proteins that produce a highly alkaline environment that could burn the skin, he said. Infected bats often have holes in their skin, which can increase their susceptibility to other infections.

The fungus can subsist on other proteins and lipids on the bats’ skin, as well as glandular secretions, the researchers said.

“P. destructans can tolerate naturally occurring inhibitory sulfur compounds, and elevated levels of calcium have no effect on fungal growth,” Raudabaugh said.

The only significant limitation of the fungus besides temperatures above 20 degrees Celsius has to do with its ability to take up water, Raudabaugh said. Its cells are leaky, making it hard for the fungus to absorb water from surfaces, such as dry wood, that have a tendency to cling to moisture. But in the presence of degraded fats or free fatty acids, like those found on the skin of living or dead animals, the fungus can draw up water more easily, he said.

“All in all the news for hibernating bats in the U.S. is pretty grim,” Miller said.

“When the fungus first showed up here in Illinois earlier this year we went from zero to 80 percent coverage in a little more than a month,” he said. The team led by U. of I. researchers that discovered the fungus in the state found a single infected bat in one northern Illinois cave, he said. Several weeks later most of the bats in that cave were infected.

Although many studies have been done on the fungal genome and on the bats, Miller said, Raudabaugh is the first to take an in-depth look at the basic biology of the fungus.

“Dan found that P. destructans can live perfectly happily off the remains of most organisms that co-inhabit the caves with the bats,” Miller said. “This means that whether the bats are there or not, it’s going to be in the caves for a very long time.”

The Illinois Natural History Survey is a division of the Prairie Research Institute at the U. of I.

This study was funded through awards given by the Illinois Department of Natural Resources State Wildlife Grants Program (project number T-78-R-1) and the Section 6 Endangered and Threatened Species Program (project number E-54-R-1) to the Illinois Natural History Survey.