IB 150 Syllabus and Course Policies

Lectures of the course are offered online in Fall 2021

Discussions are offered in person.

Note: Masks and Campus Building access is required to attend discussions

Lectures: Asynchronous online lessons, due Tuesdays and Thursdays 11:59 PM

Discussion: Live sessions. Discussions require LearningCatalytics access (check your class schedule for your discussion time and room location.)

Lecture Instructor: Dr. Benjamin Clegg

Course email: ib150-course@illinois.edu.

Course Webpage

You will find links to lecture lessons, discussion sessions and other assignments each week on the Moodle course webpage:

https://learn.illinois.edu/course/view.php?id=61173

Login with your University NetID and password. We recommend that you bookmark this page after you accessed the course page for the first time.

Textbooks and Other Required Materials

(Required) Computer/Laptop with internet connection, and built-in webcam and microphone. If you do not have either one of these, you can request assistance with these items from: https://odos.illinois.edu/community-of-care/student-assistance-center/

(Required) A non-programmable calculator other than your smart phone for simple calculations on exams. (Scientific calculators with displays larger than 2 rows will not be permitted on exams).
Tentative Class Schedule

Below is a tentative class schedule, highlighting the relationship between Lectures, Discussions and Readings. We reserve the right to make changes to the class schedule. Please consult the course homepage at learn.illinois.edu for assignment due dates and to check for any updates to this schedule.

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Discussions</th>
<th>Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1 Life and Energy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Week 1** Aug. 23–29 | 1.1 The energetics of life
1.2 How organisms drive living processes | Life & Energy | Chapters : 1; 8.1-8.3 |
| **Week 2** Aug. 30 – Sep. 5 | 1.3 Energetic limits on anatomy
1.4 Form and Function of Respiratory Systems | Fick’s Law of Diffusion | Chapters : 42.1-42.3; |
| **Week 3** Sep. 6–12 | 1.5 Form & Function of Circulatory Systems
1.6 Energetic trade-offs of alternative metabolic strategies | Physiology of Respiratory & Circulatory Systems | Chapters : 39.5, 42.5; |
| **Week 4** Sep. 13–19 | 1.7 Population Growth
1.8 Community Interaction & Ecosystem Structure | Population Growth | Chapters : 51; 52.1-52.2; 53.1; |
| **Unit 2 Life and Heredity** | | |
| **Week 5** Sep. 20–26 | 2.1 Molecular Basis for Heredity
2.2 Origin of Genetic Diversity | Predator-Prey Dynamics | Chapters : 16 |
| **Week 6** Sep. 27 – Oct. 3 | EXAM 1 (covers Lectures 1.1-1.8)
2.3 Heredity I: Mitosis | Central Dogma & Mutations | Chapters : 12.1-12.2 |
| **Week 7** Oct. 4–10 | 2.4 Heredity II: Meiosis
2.5 Transmission Genetics | Understanding Meiosis | Chapters : 13, 14 |
| **Week 8** Oct. 11–17 | 2.6 Patterns of Inheritance
2.7 Polygenic patterns of inheritance & Epistasis | Solving Genetics Problems | Chapters : 14 |
| **Week 9** Oct. 18–24 | 2.8 Testing for Independent Assortment: Linked genes
2.9 Linkage & Linkage mapping | Practicing complex patterns of inheritance | Chapters : 14 |
| **Unit 3 Evolving Life** | | |
| **Week 10** Oct. 25–31 | 3.1 Population Genetics: Hardy-Weinberg Equilibrium
3.2 Evolutionary Mechanisms I | Testing for Linkage | Chapters : 23 |
| **Week 11** Nov. 1–7 | EXAM 2 (covers Lectures 2.1-2.9)
3.3 Evolutionary Mechanisms II | Population Genetics | Chapters : 23 |
| **Week 12** Nov. 8–14 | 3.4 Evolutionary Mechanisms III
3.5 Adaptive landscapes | Making Evolutionary Inferences | Chapters : 22 |
| **Week 13** Nov. 15–21 | 3.6 Macroevolution - Speciation
3.7 Cladistics | Natural Selection case study | Chapters : 24; 25 |
| **Thanksgiving Break** | | |
| **Week 14** Nov. 29 – Dec. 5 | 3.8 Evolutionary patterns through deep time
3.9 An integrative approach to organismal biology | Great Clade Race | Chapters : 21.1-21.3; 21.5; 25 |
| **Week 15** Dec. 6 | EXAM 3 (covers Lectures 3.1-3.9) | No Discussion | |
| **Finals week** Dec. 9–17 | Optional cumulative final exam (Lectures 1.1-3.9)
Date & Time to be announced | | |
Course Grade Scale.

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Percentage Range (rounded to nearest %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>>99.50</td>
</tr>
<tr>
<td>A</td>
<td>92.50–99.49</td>
</tr>
<tr>
<td>A–</td>
<td>89.50–92.49</td>
</tr>
<tr>
<td>B+</td>
<td>86.50–89.49</td>
</tr>
<tr>
<td>B</td>
<td>82.50–86.49</td>
</tr>
<tr>
<td>B–</td>
<td>79.50–82.49</td>
</tr>
<tr>
<td>C+</td>
<td>76.50–79.49</td>
</tr>
<tr>
<td>C</td>
<td>72.50–76.49</td>
</tr>
<tr>
<td>C–</td>
<td>69.50–72.49</td>
</tr>
<tr>
<td>D+</td>
<td>66.50–69.49</td>
</tr>
<tr>
<td>D</td>
<td>62.50–66.49</td>
</tr>
<tr>
<td>D–</td>
<td>59.50–62.49</td>
</tr>
<tr>
<td>F</td>
<td>0–59.49</td>
</tr>
</tbody>
</table>

Course Grade Structure.

<table>
<thead>
<tr>
<th>Course Component</th>
<th># assign</th>
<th>Pts/ assign</th>
<th>Point total</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hour Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam 1</td>
<td>175</td>
<td></td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>Exam 2</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam 3</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lectures</td>
<td>26</td>
<td>10</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>Online Homework</td>
<td>14</td>
<td>6</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Getting to Know my Classmates</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discussions</td>
<td>13</td>
<td>10</td>
<td>130</td>
<td>Includes Attendance (7) & Learning Catalytics (3)</td>
</tr>
<tr>
<td>Extra credit opportunities:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetics Challenge Problem</td>
<td>1</td>
<td>1</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Study Skills Modules</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Surveys</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekly Q&A</td>
<td>14</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COURSE TOTAL</td>
<td></td>
<td></td>
<td>1000 (+55 pts extra credit)</td>
<td></td>
</tr>
</tbody>
</table>
Course structure and philosophy:

This course is designed to train you how to think like and ultimately become a biologist, and not merely as a survey course about biological topics.

What this means is that this course will not value memorized factoids, as fascinating as they may be, but instead aims to provide you with some of the core tools that an organismal biologist can use to apply in novel contexts, test new hypotheses, and arrive at reasonable and testable predictions on the quest to learn new aspects of how living systems work.

This does not mean that factual knowledge is unimportant – you will need to learn the nuts and bolts of the concepts covered. But it is not enough. You will need to gain a deeper understanding of the causal and mechanistic nature of processes that allow you to extrapolate or deduce implications in novel contexts.

Most students have taken HS and other intro courses that focused at the cognitive level of “memorizing” and “understanding”, collectively called “Lower Order Cognitive Skills”. Professional schools like med schools, grad schools, and employers alike mostly value “Higher Order Cognitive Skills”. Proficiency in these requires multiple years of dedicated training. In this course we will repeatedly push ourselves to the application, and occasionally to the analyzing level to start on this journey.

In summary: Learning should push you into the unknown and give you the power to evaluate the rigor of a logical argument or interpretation of results in the context of our previous understanding of a concept. In this course, and hopefully throughout your college career, always push yourself to whether you understand “why” and “how” something works, to where you are confident you could apply it to solve problems in a new setting using the covered concepts.

How to use the provided learning goals and targets:

This course is organized around explicit learning goals and targets that are provided to make the course’s expectations explicit for you and avoid surprises on the hour exams. Each unit in this course is accompanied by a set of learning goals and targets that should be your learning guide as you study.
Be careful not to confuse the role of targets and goals when studying!

The **goals** are the bold, numbered, broad questions. It is this goal that you want to focus on fully understanding and gain the ability to apply its implications in novel scenarios.

The **targets** are a set of components that you need to be able to apply synthetically in your full explanation of the goal.

In other words, fully understanding, explaining and applying the goals to gain new insights is what you want to reach. The targets are steps or components that help you get there.

One effective way to use the goals and targets is to take a goal you are studying and see if you can write an essay in 1 or 2 paragraphs to fully explain how it works. Then you can use the targets to “grade” yourself whether you were able to draw on all the relevant aspects in your essay to explain this goal.

> Memorizing terms, steps, or answers to individual targets will not be enough to succeed on exams in this course!
Tips for Success

To be successful in IB 150 you will need to do more than come to class and cram for exams. We have compiled the following tips to help you be successful in IB 150 and the other science classes you will be taking.

What to do before class:

1. Read or at least skim the assigned reading before coming to class. You will have an easier time keeping up with lecture and learning the information if you have read over the information before attending class. This will also help you prepare for the weekly homework assignments.

What to do in class:

1. Come prepared to learn. It is very easy to get distracted. Minimize electronic distractions. Research has shown that people don’t learn as well when they are trying to multitask.
2. Take notes
 a. While many students prefer to take notes on their computers, it is easy to get in the habit of trying to record everything the instructor is saying without actually understanding the material. Recent research suggests that taking notes by hand is a better option for many students and leads to higher learning gains.
 b. For taking notes by hand - one useful technique is the use of right page/left page notes. In class, use the right page to record your class notes. After class, use the left page to organize your notes (make tables, concept maps) and add additional supporting material (from pre-lecture videos, textbook, or discussion).
3. Ask for clarification if you don’t understand something. You can post questions in the weekly Q&A Forum, or come to office hours.
4. Actively engage in learning activities with your group in discussion. One of the best ways to learn material is by explaining it to someone else.

What to do after class:

1. Review your notes - do this as soon as you can after class. Rewriting your notes in your own words can be a very helpful way to learn. Take this opportunity to create graphical organizers such as Venn diagrams, tables, and concept maps. These organizers will help you see how the content goes together in each class.
2. If after reviewing your notes you have questions - get help (go see a TA or Dr. Clegg in office hours). The content in science classes builds on previous classes - don’t wait until the exam to seek help.
General Study tips:

You will not learn the material covered in IB 150 by cramming the night before an exam. Here are some tips that will help you be successful on exams:

1. Review the material (class and discussion) frequently. Remember that discussions give you “how-to” strategies for working with a concept and solving applied problems. Review these step-by-step strategies and practice applying these on that week’s homework.
2. Build concept maps using key terms - make sure you understand the relationships between these terms. Simply making flashcards and memorizing definitions will not lead to success.
3. Create exam questions from class and discussion material and then try to answer them. Try to make questions that require application of knowledge not just memorization of facts.
4. Make drawings from your notes. Making a diagram or flowchart from your notes can help you understand how concepts are related.
5. Study in blocks - don’t study for hours on end. Study some biology and then take a break or study something else.
6. Make sure that you get some sleep after studying - you need to sleep for your brain to process any new information.
7. If you have exam anxiety, research has shown that journaling can improve student exam success. Before the exam, take 10 minutes to write down what is making you anxious about the exam (or other things that may be going on). This will free up your brain, and break the cycle of thinking about your anxieties more than about what you have achieved.

For exams:

1. Be able to explain all learning goals to someone so they understand WHY and HOW the concepts covered work.
2. Redo the lecture and discussion activities. Pay attention to which learning goals and concepts we practiced applying and the logic needed to apply them to make predictions in each activity. You will need the same line of reasoning to solve problems that draw on these concepts on the exam!
3. Use study versions of the homework assignments and the practice exam to practice the following problem-solving strategy and use it on the exam for applied problems:
 a) Identify the concept you need (e.g.: counter-current flow, Fick’s Law, trophic cascade, etc)
 b) Make a quick sketch or summary IN WRITING in the margins of your exam to remind yourself how this concept works, and the logic we practiced in class for how to use it.
 c) Return to the problem and identify what is different and similar in this problem from problems we did in class, then apply the same logic we practiced to predict what will happen under the changed circumstances.
Strategy for solving applied questions:
Applied questions can initially feel surprising, because they require you to make sense of a scenario you have not seen in class before. However, once you get used to them they can be fun. You are never asked to solve questions that require you to work with outside knowledge that was not covered in the course. The trick with applied questions is to solve them using the covered concepts as investigative tools to make inferences and using the same logic or reasoning that we practiced in lectures.

To be ready to answer applied questions on the homework and the hour exams, make sure you have studied the material first in a way that you can explain WHY or HOW a process works! Then follow these steps to set-up the question:

a) Identify the core concept that is going to be relevant for this question.
b) Identify the activity in class where we practiced the logic needed to reason in a given system.
c) Compare and contrast: what is the same and what is different in this question compared to the case we went through in class?
d) Use causal reasoning to deduce the answer using the same line of reasoning as we practiced in class.

Disability Accommodations
To obtain disability-related academic adjustments and/or auxiliary aids, students with disabilities must contact the course instructor and the Disability Resources and Educational Services (DRES) as soon as possible. To contact DRES you may visit 1207 S. Oak St., Champaign, call 333-4603 (V/TTY), or e-mail a message to: disability@illinois.edu

Getting Help
- Only contact the course e-mail if you have a personal question.
- For all other questions about course content, activities, deadlines, technical problems, etc., please check the General Q & A forum at the top of the Moodle Course Webpage to see if someone else has already asked your same question and received a response.
- If your question isn't there yet, post your question to the General Q & A forum.
- Feel free to answer peers in the General Q&A Forum if you know the answer!
- If you have a personal question, email ib150-course@illinois.edu.
Tutoring Resources

To obtain disability The Office of Minority Student Affairs’ (OMSA) Academic Services Center (ASC) offers free tutoring and academic services. Matched and drop-in tutoring along with Supplemental Instruction (SI), collaborative learning/study groups, and academic skills workshops are among the services featured in the OMSA ASC. OMSA’s services are designed to help students achieve in college. The level of rigor at the University of Illinois is different than in high school or community college. No matter how you performed before attending Illinois, there is always room to examine and hone your study skills. To earn more about these services, visit:

https://omsa.illinois.edu/programs/tutoring/

or stop by the OMSA ASC located at 1103 West Oregon Street, Suite E, Urbana, IL 61801.

To make the most of your tutoring and workshop session(s):

- Request a tutor at the beginning of the term. Tutoring begins in the second week of the semester.
- Come to each of your tutoring or workshop sessions prepared. Preparation includes bringing with you your textbooks, notes, and specific questions concerning the material. The more you prepare, the more you will get out of the session.
- Tutors do not serve as a substitute for your instructional faculty. They will not "lecture" or "re-teach." They will provide strategies to help you improve your approach to mastering your course content. Tutoring is not a substitute for missed classes. If you miss class, make sure you get notes from a classmate and meet with the professor and/or TAs during office hours.
Course Policies

Exam Information

There are three hour exams, each covering the preceding Unit. Exams are proctored via the online proctoring service ProctorU, closed book, closed notes, and are based on the learning objectives of the lecture and discussion activities of each respective unit.

Hour exams consist of a combination of 12 multiple choice (MC), 2 short answer or self-constructed answer questions, and 1 essay question. Practice questions for the Hour Exams will be available on the course webpage.

Exam Dates

This course’s hour exams are scheduled to be held as ONLINE EVENING EXAMS. You have 60 minutes to complete the hour exams, and you can start at any time between 7-11 pm on the following dates:

- Exam 1: Monday, September 27th
- Exam 2: Monday, November 1st
- Exam 3: Monday, December 6th

Missing an exam

If you have to miss an exam, you can have 1 exam prorated (replaced by average of the other two exams), so long as you contact ib150-course@illinois.edu at least 24 hours before the exam with an acceptable, university-sanctioned excuse and documentation. (If you get sick the day of the exam, please see below). Acceptable excused absences (with proper documentation) include:

- illness (requires a doctor’s note, or a note from the Dean of students if illness lasts 3 or more days),
- a conflict with another course’s exam that is given at the exact same time as the IB 150 exam without possibility of taking a conflict exam in that course (requires documentation of enrollment in the course and a copy of that course’s syllabus with exam date information),
- a University athletic event (letter from your athletics program required 1 week PRIOR to the exam),
- job, graduate, or professional school interviews (a best effort should be made to schedule these events around exams; documentation of interview required).

Documentation for illness has to be provided no later than 48 hours after the exam (or 48 hours after the date range of illness as indicated on the doctor’s note) to qualify for a prorated exam score. Documentation for any other reason requires documentation at least 1 day prior to exam. Missing an exam and failure to provide proper documentation within this time period will result in a score of zero for the exam score that CANNOT be replaced by the Final Exam.
Final Exam & Resurrection Policy

There is no mandatory final exam in this course.

However, if you are unhappy with your hour exam scores, you can take an optional cumulative final exam during the official campus final exam slot for this course (Date & Time will be announced by University and the course when available). If you choose to take this optional final exam, the final exam score will automatically replace your hour exam total IF your final exam score is higher than the hour exam total. A lower optional final exam score than the hour exam total will not affect your course grade in any way. This optional final exam consists of 75 MC questions & 1 essay, covers all learning goals of the semester, and you have 3 hours to complete it. The Final Exam WILL NOT replace unexcused missed hour exam scores!

Questions and corrections to exam grades

All exams are secure exams, so you will not be allowed to view them again after you turn them in. A key to the exam will not be posted. Students who believe that the exam had a mistake or was incorrectly graded should contact ib150-course@illinois.edu within 1 week of exam scores being posted and your exam will be manually reviewed for scoring errors.

Course Components

Online Lecture Lessons

You are required to complete the online lecture lessons found on the moodle course webpage under each lecture by the listed date and time (always due 11:59 PM on the day shown). You are allowed multiple attempts at the complete lessons. Your final score will be the average score of your attempts at a full lecture lesson. You can rework the questions in the study versions that open after the due date for practice or exam review without credit. If you missed a lecture due to a qualifying event (see section on excused absences) you may request an extension to complete the online lecture lesson once you return from your excused absence (there are no excused drops).

Weekly Online Homework Sets

Each week has an online homework set that is due on the Friday of the same week at 11:59 pm. Links to these assignments are found on the moodle course page in each week’s module. Each of these homework sets is worth 6 points. You have 2 attempts at each question for multiple choice questions, the second scored for ¾ credit. Note that you can check for automatic feedback immediately after the due date by visiting the homework set after its due date.
Synchronous Discussions (in person)

Discussions are held in person. You have to attend discussion for the time and section you signed up for. You will need access to LearningCatalytics software to get credit for your work during discussions (comes with your online resources of your textbook or as standalone software. Links on course webpage).

The main goal of discussion is to help students learn how to “think like a biologist”. To do this, students need to have opportunities to do the things that biologists do such as: engage in problem-solving, develop hypotheses, design experiments, collect and interpret data, and engage in scientific communication.

Discussions involve minimal lecturing and TA-led review, and instead focus on students working in small groups to solve problems. The problem sets are designed to allow you to practice the skills needed to do well on the hour exams. A main goal of discussion is to encourage students to discuss and rationalize through different problems using sound biological knowledge and reasoning. This approach has been shown to lead to higher student scores on exams and to a deeper understanding of course material compared to reviewing of material by TA.

Main expectations for discussion:

1. Be on time.
2. Be prepared.
3. Be active in your group
4. Strive for understanding

Discussion Grading:
We will begin recording discussion grades in Week 2. There will be 13 graded discussions. Each discussion is worth 10 points for a total of 130 points.

Discussion grade breakdown:

Participation points – 7 pts:
We expect all students to be active in their groups. Students will have up to 2 participation points deducted from their grade for each of the following:
 ● lack of participation during discussion activities
 ● every 5 minutes you are late.

Individual & Team scores on Learning Catalytics problem sets – 3 pts:
 ● Graded on accuracy
Late Assignments, Missed Attendance, Section Change

Late Submissions of Assignments

Online assignments are typically due at 11:59 pm CDT/CST on their listed due dates, unless otherwise noted. Discussion Learning Catalytics problem sets are due by the end of your discussion session, or as instructed by your TA during your discussions. All assignments **must be completed on time**. Late submissions will NOT be graded, unless incurred due to extenuating circumstances. Proper documentation for illness, family emergency, athletic event or other legitimate reason is required in order to receive an extension for submitting pre-lectures, and online homework assignments.

Please consult the Student Code Article 1, Part 5 to check whether a particular reason for absence is eligible for late submission of work: http://studentcode.illinois.edu/article1_part5_1-501.html.

Missed Discussion Attendance

You must attend your discussion to earn the points associated with attendance and participation. If you need to miss discussion due to a legitimate, University-sanctioned emergency (see above), we strongly encourage you to e-mail ib150-course@illinois.edu at least 3 days in advance to schedule an alternate discussion time for the affected week. If that is impossible, your discussion score will be excused as appropriate.

Section Changes, Add and Drop Information

Use the UI Enterprise System. Instructors or TAs cannot perform any registration functions for you. Students must attend the discussion sections in which they are enrolled unless they have received authorization from their TA to attend a make-up section. Make-up requests may be denied if a section is full. Apply at your College Office before the deadline if you wish to elect the Credit/No Credit option. To drop the course after the drop deadline, students must petition a Dean in their College Office.

Late Registration

Adding the course after the first day of classes *does not excuse you from assignments that you have missed*. If you add the course late, you need to contact ib150-course@illinois.edu within 24 hours of adding the course to have due dates extended one week following your add date to allow the opportunity to complete any missed assignments. Missed discussion periods due to a late add do not count toward the dropped participation score but will be prorated if brought to our attention.
Academic Integrity

All students are responsible for reading the University of Illinois Student Code. Pay particular attention to http://admin.illinois.edu/policy/code/article1_part4_1-402.html concerning plagiarism and cheating.

- Penalties for plagiarism on course assignments result in a reduced grade for the assignment and a note in your student file. Plagiarism is the copying or leaning on sources without properly citing your source. To avoid a charge of plagiarism, all submissions need to be your own synthesis of information, demonstrating your own understanding, and any sources you used to obtain information must be properly attributed at the end of your submissions.

- Copying or leaning on unauthorized student files or keys obtained from other students (downloaded from the web or sharing of physical copies) will be charged as cheating and the use of unauthorized materials rather than a charge of plagiarism, and results in a score of zero on the assignment, and will receive a note of this academic violation in your student record.

- Uploading or sharing of physical answer sets or keys to assignments with other students will be charged as facilitation of cheating with a note in the student file, and a reduction in course grade by one letter grade. An additional lawsuit for copyright infringement may be filed in court if applicable.

- Any form of cheating on hour exams will result in an automatic score of zero on the hour exam and a note in the student file, regardless of the extent to which a student cheated on the exam.

- Cheating on the final exam will result in an automatic score of zero for the course and a note in your student file.

If you have been found guilty of any academic violation, you forfeit the resurrection policy.

Additional penalties may be imposed by the university, including dismissal from the university, depending on the presence of aggravating factors or if this was not your first infraction.
Run > Hide > Fight

Emergencies can happen anywhere and at any time. It is important that we take a minute to prepare for a situation in which our safety or even our lives could depend on our ability to react quickly. When we’re faced with almost any kind of emergency – like severe weather or if someone is trying to hurt you – we have three options: Run, hide or fight.

Run
Leaving the area quickly is the best option if it is safe to do so.

- Take time now to learn the different ways to leave your building.
- Leave personal items behind.
- Assist those who need help, but consider whether doing so puts yourself at risk.
- Alert authorities of the emergency when it is safe to do so.

Hide
When you can’t or don’t want to run, take shelter indoors.

- Take time now to learn different ways to seek shelter in your building.
- If severe weather is imminent, go to the nearest indoor storm refuge area.
- If someone is trying to hurt you and you can’t evacuate, get to a place where you can’t be seen, lock or barricade your area if possible, silence your phone, don’t make any noise and don’t come out until you receive an Illini-Alert indicating it is safe to do so.

Fight
As a last resort, you may need to fight to increase your chances of survival.

- Think about what kind of common items are in your area which you can use to defend yourself.
- Team up with others to fight if the situation allows.
- Mentally prepare yourself – you may be in a fight for your life.

Please be aware of people with disabilities who may need additional assistance in emergency situations.

Other resources

- police.illinois.edu/safe for more information on how to prepare for emergencies, including how to run, hide or fight and building floor plans that can show you safe areas.

- emergency.illinois.edu to sign up for Illini-Alert text messages.

- Follow the University of Illinois Police Department on Twitter and Facebook to get regular updates about campus safety.