IB 451 Conservation Biology
4 credit hours

Professor Ken N. Paige
School of Integrative Biology
Department of Evolution, Ecology and Behavior
Office: 481 Morrill Hall, 505 S. Goodwin, Urbana
E-mail: kpaige@illinois.edu

Course Description: Synthesis of conservation biology with an emphasis on the preservation of biological diversity and its evolutionary potential. Laboratory will include reading and discussing primary literature, an introduction to the use of modern molecular techniques in conservation biology and field conservation problem solving. Same as CPSC 436 and ENVS 420.

Prerequisite: IB 203 or consent of instructor.

Requirements that the Course Meets: Major in Integrative Biology (elective), Minor in Ecology and Conservation

Lectures: 9:30-10:50 am TTH, Face to face in room 2020B Natural History Building

Discussion/Computation Labs: T 12-1:50, W 12-1:50 pm, Room 4004 Natural History Building

Course Site: Moodle: https://online.illinois.edu/getting-started/learning-management-systems/moodle

Student Learning Outcomes: 1) Students will demonstrate broad-based knowledge of the fundamentals of Conservation Biology, 2) Students will demonstrate skills in the observation and experimental study of organisms, using both field-based and laboratory-based approaches, 3) Students will demonstrate skills in identifying, accessing, comprehending and synthesizing scientific information, including interpretation of the primary scientific literature. This includes understanding key questions and hypotheses, interpreting results and conclusions, and evaluating quality through critique, 4) Students will demonstrate the ability to communicate original scientific work in the form of an oral presentation.
Emergencies

General Emergency Response Recommendations
Run>Hide>Fight Video
Building Emergency Exits

Policies
Attendance and Makeup Policy - Office of the Dean of Students -
http://studentcode.illinois.edu/article1_part5_1-501.html

Academic Integrity
According to the Student Code, `It is the responsibility of each student to refrain from infractions of academic integrity, from conduct that may lead to suspicion of such infractions, and from conduct that aids others in such infractions.' Please know that it is my responsibility as an instructor to uphold the academic integrity policy of the University, which can be found here: http://studentcode.illinois.edu/article1_part4_1-401.html.

Disability Accomodations
To ensure that disability-related concerns are properly addressed from the beginning, students with disabilities who require assistance to participate in this class are asked to see me as soon as possible. https://www.disability.illinois.edu/

Lecture
January 17 - Course Introduction
January 19 - What is Conservation Biology
January 24 - Conservation: A Historical Perspective
January 26 - "Wild by Law"
January 31 - How many species are there?
February 2 - Loss of Biodiversity: Rates, Causes, Consequences, Perspectives
February 7 - Population Bottlenecks & Genetic Diversity
February 9 - Effective Population Numbers
February 14 - Student Presentations
February 16 - Exam #1
February 21 - Effective Population Size & Genetic Diversity
February 23 - Molecular versus Quantitative Genetic Perspectives and Conservation
February 28 - Gene Flow/Management measures; One-Migrant-Per-Generation
March 2 - Student Presentations
March 7 - Inbreeding/Outbreeding Depression
March 9 - Demographic/Environmental Stochasticity
March11-19 - Spring Break
March 21 - Single Species Conservation: Choosing Species
March 23 - Student Presentations
March 30 - Habitat Fragmentation
March 28 - Habitat Fragmentation
March 30 - Exam #2
April 4 - Student Presentations
April 6 - Planet in Peril – Part 1
April 11 - Student Presentations
April 13 - Invasive species
April 18 - Student Presentations
April 20 - Climate Change and Biodiversity
April 25 - Endangered Species Act
April 27 - Endangered Species Act
May 2 - Review Session for Final Exam
May 4 - Reading Day

Lab

Lab #1 (Week of January 24th)
Discussion Reading - The Land Ethic
Discussion Reading - What is Conservation Biology?
Discussion Reading - What is Conservation Science?
Response Letters

Lab #2 – (Week of January 31st)
In Class Exercise - An Exploration of the IUCN Red List
Discussion Reading – Decline of North American Avifauna
Discussion Reading – Sixth Mass Extinction

Lab #3 – (Week of February 7th)
In Class Exercise - Genetic Drift
Discussion Reading – Conservation of Biodiversity in the Genomics Era

Lab #4 – Week of February 14th
In Class Exercise - Landscape Genetics
Discussion Reading – Evaluating the genome-wide impacts of species tranlocations: the greater prairie-chicken as a case study

Lab #5 – (Week of February 21st)
Discussion Reading – Managing the Middle: A Shift in Conservation Priorities based on the Modification Gradient
Discussion Reading – Wilderness Areas Halve the Extinction Risk of Terrestrial Biodiversity

Lab #6 – (Week of February 28th)
Discussion Reading – Importance of Small Habitat Patches for Biodiversity
Discussion Reading – Proactive Conservation to Prevent Habitat Losses to Agricultural Expansion

Lab #7 – (Week of March 7th)
Discussion Reading - Habitat Fragmentation – Ecosystem Effects
Discussion Reading – Habitat Alteration and Species Loss
Habitat Fragmentation and Biodiversity – Key Findings, Future Challenges
March 11-19 Spring Break

Lab #8 – (Week of March 21st)
Discussion Reading – Why Biodiversity is Important to the Functioning of Real-World Ecosystems
Discussion Reading – Realistic Species Losses Disproportionately Reduce Grassland Resistance to Biological Invaders

Lab #9 – (Week of March 28th)
Discussion Reading – Lessons from 30 years of population viability analysis of wildlife populations

Lab #10 – (Week of April 4th)
Discussion Reading - Increasing the Effectiveness of the Endangered Species Act

Lab #11 – (Week of April 11th)
Discussion Reading – Alien versus Native Species as Drivers of Extinction
Discussion Reading – Saving Endangered Species Using Adaptive Management

Lab #12 – (Week of April 18th)
Discussion Reading - Contemporary evolution meets conservation biology
Discussion Reading - Rapid Evolution of Egg Size in Captive Salmon
Discussion Reading - What if Extinction is not forever?

Exams (online)

Each exam will be taken online for the duration of one class period. These exams are open book and will be turned in at the end of the exam via email to the instructor.

Graduate and Undergraduate Presentations

Each graduate and undergraduate student enrolled in the course will be required to select and present one case history during the semester. You will pair-up with one other graduate or undergraduate student and split the presentation for delivery. You can choose a topic of interest (I can also assist you in choosing a topic). Presentations will be in a Powerpoint format. Presentations should last 15 minutes including approximately 2-3 minutes for questions. Students will be graded on their presentations. The purpose of this exercise is to provide students an opportunity to prepare and present lecture materials for a class and to provide real-world examples of conservation in action.

Discussion/Lab Section

The Discussion/Lab section consists of four components. 1. Lab reading material (found as pdf files) and discussion, 2. Exercises, 3. Workbook and student generated questions following the exercises to help address real world problems in conservation.

Participation - Discussions

Participation is essential to the discussion section. We will expect everyone to contribute and will "encourage" people who do not regularly contribute. More importantly, participation in discussion is essential to your own education both in terms of your understanding of concepts related to
conservation biology and in honing your verbal skills. I expect each student to come prepared with at least two questions about one or more of the papers each week to share with the class to help stimulate discussion and ensure everyone has read the assignment.

Grading

Three lecture exams - 100 points each = 300 points total

Lab - 12 labs, 10 points each = 120 points Total points = 120

Graduate/Undergraduate led lectures - 50 points, one each = 50 points total

Total course points – 470

Grading Scale (as a %)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Score Range</th>
<th>Letter Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>98.00 – 100.00</td>
<td>A+</td>
</tr>
<tr>
<td>A</td>
<td>92.00 – 97.99</td>
<td>A</td>
</tr>
<tr>
<td>A-</td>
<td>90.00 – 91.99</td>
<td>A-</td>
</tr>
<tr>
<td>B+</td>
<td>88.00 – 89.99</td>
<td>B+</td>
</tr>
<tr>
<td>B</td>
<td>82.00 – 87.99</td>
<td>B</td>
</tr>
<tr>
<td>B-</td>
<td>80.00 – 81.99</td>
<td>B-</td>
</tr>
<tr>
<td>C+</td>
<td>78.00 – 79.99</td>
<td>C+</td>
</tr>
<tr>
<td>C</td>
<td>72.00 – 77.99</td>
<td>C</td>
</tr>
<tr>
<td>C-</td>
<td>70.00 - 71.99</td>
<td>C-</td>
</tr>
<tr>
<td>D+</td>
<td>68.00 – 69.99</td>
<td>D+</td>
</tr>
<tr>
<td>D</td>
<td>62.00 – 67.99</td>
<td>D</td>
</tr>
<tr>
<td>D-</td>
<td>60.00 - 61.99</td>
<td>D-</td>
</tr>
<tr>
<td>F</td>
<td>Below 60</td>
<td>F</td>
</tr>
</tbody>
</table>