School of
Integrative Biology

SIB News

news item headline image

Scientists further cowpea research—boosting canopy CO2 assimilation, water-use efficiency

Crops grow dense canopies that consist of several layers of leaves—the upper layers with younger sun leaves and the lower layers with older shaded leaves that may have difficulty intercepting sunlight trickling down from the top layers.

In a recent study published in Food and Energy Security...

Scientists from Realizing Increased Photosynthetic Efficiency (RIPE) aimed to understand how much variation exists within diverse cowpea lines in light absorption and carbon dioxide (CO2) assimilation throughout the canopy. This information can ultimately be used to design more efficient canopies—with greater CO2 assimilation and water-use efficiency—to increase yields.

RIPE, which is led by the University of Illinois, is engineering crops to be more productive by improving photosynthesis, the natural process all plants use to convert light energy to produce biomass and yields. RIPE is supported by the Bill & Melinda Gates Foundation, the U.S. Foundation for Food and Agriculture Research (FFAR), and the U.K. Government’s Department for International Development (DFID). One of the target crops of the RIPE project is cowpea.

Cowpeas, commonly known as black-eyed peas in the U.S., are one of the oldest domesticated crops in the world, responsible for feeding more than 200 million people per day.

“They are a staple crop in Africa, providing a source of protein for humans and livestock, and restoration of soil nutrition through nitrogen fixation,” said Lisa Ainsworth, a research plant physiologist with the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS).

Read the full article

Publication Date: 08/19/2020
Editor: Amanda Nguyen