The structure and function of ecosystems are changing due to pressures from external forcing such as climate change, anthropogenic nitrogen deposition, and species invasion. Through our research we strive to improve our understanding of plant, microbial and soil dynamics to better predict, adapt to, and mitigate the effects of these global environmental changes. Our research program includes projects within the two major themes detailed below.

1. Controls on Redox-Sensitive Biogeochemical Processes

The dominant biogeochemical processes responsible for greenhouse gas dynamics in terrestrial ecosystems are driven by reduction-oxidation (redox) reactions which yield energy used in microbial metabolism. When oxygen availability is limited, soil microbes utilize anaerobic metabolisms, reducing alternative electron acceptors in a sequence following the thermodynamic favorability of the redox reactions. This area of our research program focuses on improving understanding of the controls on anaerobic processes that have previously been discounted in non-flooded upland soils.

Effects of Rainfall Intensification on Soil Greenhouse Gas Emissions in the Midwest

The intensity and frequency of rainfall events in the Midwest, U.S. are expected to increase as a result of climate change-induced alterations to the water cycle. This can lead to more frequent ponding of soils with unknown effects on the regional global warming potential from soil greenhouse gas emissions. Midwest agricultural soils are large sources of the potent greenhouse gas, nitrous oxide, which could be reduced to the inert gas, dinitrogen, via denitrification under anaerobic soil conditions caused by ponding. However, this decrease in global warming potential by reductions in soil nitrous oxide emissions could be offset by increases in soil emissions of another greenhouse gas, methane, which are high in flooded ecosystems such as wetlands and rice paddies.

A challenge in studying soil nitrous oxide and methane dynamics is that both of these gases can also be consumed by soil microbes such that the net soil-atmosphere exchange of the gases can mask patterns in the gross production and consumption process rates, as my prior work has shown (Yang et al. 2016). Our research program is uniquely poised to advance our mechanistic understanding of soil nitrous oxide and methane dynamics because Dr. Yang previously developed an innovative stable isotope trace gas pool dilution technique that enables us to simultaneously measure gross production and consumption of these gases in situ in the field and ex situ in the laboratory (Yang et al. 2011).


Controls on Dissimilatory Nitrate Reduction to Ammonium in Upland Soils

Microbially mediated dissimilatory nitrate reduction to ammonium (DNRA) plays a pivotal role in regulating ecosystem nitrogen retention versus loss. By converting nitrate to ammonium, DNRA retains nitrogen in ecosystems to support primary productivity, reduces nitrate leaching to ground- and surface waters, and competes with denitrification to decrease gaseous dinitrogen and nitrous oxide losses. Global change factors or land management practices that affect DNRA will, therefore, have cascading effects through the ecosystem nitrogen cycle. Despite its importance, DNRA is generally disregarded in upland terrestrial ecosystems because of the misconception that the process is restricted to reducing conditions typically found in flooded environments. Dr. Yang’s prior work has demonstrated the occurrence of DNRA in oxic soils from a diverse set of biomes (Yang et al. 2017). Furthermore, Dr. Yang has shown that DNRA rates can be higher under oxic conditions than anoxic conditions (Yang et al. 2015).

In collaboration with Dr. Angela Kent, a microbial ecologist in the UIUC Department of Natural Resources and Environmental Sciences, we are currently surveying the environmental and genetic potential for DNRA in many existing agricultural field trials that provide contrasting soil conditions (e.g., annual corn and soybean crops versus perennial bioenergy crops, till versus no-till, fertilized versus unfertilized, etc.). We are also working with Dr. Rob Sanford, an environmental microbiologist in the UIUC Geology Department,  and Dr. Joanne Chee-Sanford, a microbiologist in the USDA Agricultural Research Service, to explore the mechanisms leading to the unexpected competitiveness of DNRA under oxic soil conditions.

Funding: U.S. Department of Agriculture NIFA; Illinois Nutrient Research and Education Council; U.S. National Science Foundation


Iron-mediated Biogeochemistry in Terrestrial Ecosystems

Soils are generally rich in iron, the fourth most abundant element in Earth’s crust. Changes in the redox state of iron can be coupled to the biogeochemical cycling of carbon, nitrogen, and phosphorus through both biotic and abiotic processes. For example, Dr. Yang and colleagues discovered a new pathway for nitrogen loss from terrestrial ecosystems, iron reduction coupled to anaerobic ammonium oxidation (Yang et al. 2012). This pathway (termed Feammox) can lead to the production of nitrite or nitrate, which can contribute to nitrous oxide (N2O) emissions if denitrified. However, it can also lead directly to dinitrogen (N2) production from ammonium, thus short circuiting the soil nitrogen cycle and bypassing the potential for N2O production.

The importance of iron in catalyzing redox-driven biogeochemical cycling has been underappreciated in terrestrial ecosystems because they are typically not considered to harbor the anaerobic conditions under which iron reduction occurs. However, soils can experience anaerobic conditions following rain events or in microsites of high biological oxygen consumption. Research on iron-mediated biogeochemistry in terrestrial ecosystems is currently hampered by the lack of general understanding of where iron reduction is important. We are conducting a continental-scale survey of soils collected from the NSF Critical Zone Observatory (CZO) Network, which spans diverse ecosystems across the contiguous U.S. and Puerto Rico. The main objective of this study is to elucidate the controls on potential iron reduction rates by assessing soils that exhibit wide ranges in iron mineralogy and abundance, soil carbon quantity and quality, pH, microbial community composition, and other possible explanatory variables.

Funding: UIUC Campus Research Board


2. Plant Community Composition Effects on Biogeochemical Processes

Plant-soil-microbe interactions regulate biogeochemical processes in terrestrial ecosystems yet the mechanisms linking these interactions to ecosystem function are not well characterized. We investigate these mechanisms related to carbon and nitrogen cycling in a variety of contexts.

Production Agroforestry as a Transformative Solution to Sustainable Agriculture

The Midwest is currently dominated by annual monocultures (corn-soybean rotations) which require high inputs of fertilizers, pesticides, and energy, resulting in a plethora of negative environmental impacts. Production agroforestry (also referred to as woody polycultures)—growing multiple tree, shrub, and herbaceous species together to produce staple food and fodder crops—is a transformative solution to the dual challenge of meeting exponentially increase global food demands and mitigating the negative environmental impacts of large-scale agriculture. Dr. Yang is a member of an interdisciplinary team awarded a seed grant in 2014 by the UIUC Institute for Sustainability, Energy, and Environment to evaluate the economic, environmental, and social aspects of the transition from corn-soy rotation to production agroforestry in the Midwest. Our group is focused on elucidating the mechanisms underlying ecosystem service enhancement by production agroforestry so that we can best guide farmers in designing and managing these systems.

We are also working with Dr. Jeremy Guest, an environmental engineer on our team, to determine how fertilization of production agroforestry systems affects the tradeoff between crop productivity and the mitigation of nutrient leaching and soil greenhouse gas emissions relative to corn-soy rotations. This three-year USDA-funded project started in 2017 is based on working farms throughout the Midwest. It also involves outreach efforts in collaboration with the non-profit organization, the Savanna Institute, including to develop as a virtual community of perennial crop farmers and researchers.

Funding: U.S. Department of Agriculture NIFA


Mycorrhizal Mediation of Forest Nutrient Cycling

Recent studies have provided strong evidence that temperate forest nutrient and carbon dynamics are mediated by plant-mycorrhizal associations, a mutualistic relationship in which plants allocate carbon belowground to mycorrhizal fungi in exchange for nutrients such as nitrogen and phosphorus.  We conducted a study to determine if mycorrhizal associations mediate the response of soil carbon and nitrogen cycling to nitrogen fertilization mimicking atmospheric nitrogen deposition in a montane tropical forest in Panama. We sampled under focal tree species known to associate either with arbscular mycorrhizal fungi or ectomycorrhizal fungi in this highly diverse forest. We found distinct patterns of soil carbon storage and extracellular enzyme activity under trees associated with arbuscular- versus ecto-mycorrhizal fungi, although nitrogen addition effects were similar across all tree species (Lawrence et al., in prep). In contrast, patterns in gross rates of soil nitrogen cycling did not differ consistently by mycorrhizal association and were generally not affected by nitrogen addition (Yang et al. in prep).

Funding: UIUC Campus Research Board


Invasive Species Effects on Ecosystem Nitrogen Dynamics

Invasive plant species can alter ecosystem nitrogen dynamics to create positive feedback loops that increase their productivity at the expense of native species. However, invasive species impacts on microbially mediated soil nitrogen cycling processes are rarely explicitly studied. Dr. Yang’s prior work, led by an undergraduate completing his senior thesis under her supervision, showed that the invasive perennial pepperweed (Lepidium latifolium) suppresses the size of the soil microbial community and gross rates of soil nitrogen cycling at peak growth, when plant nitrogen demand is high; conversely, pepperweed stimulates them after senescence when nitrogen-rich litter is returned to the soil (Portier et al., in prep).

We are currently collaborating with Dr. Tony Yannarell, a microbial ecologist in the UIUC Department of Natural Resources and Environmental Sciences, to determine if and how garlic mustard (Alliaria petiolata), a prevalent invader of understory communities in North American forests, disrupts forest nitrogen cycling by inhibiting the mutualistic fungi of trees and understory plants.

Funding: U.S. Department of Agriculture McIntire-Stennis


Plant-Soil-Microbe Interactions in Bioenergy Cropping Systems

A challenge in developing ecologically and economically sustainable bioenergy and bioproducts markets is our limited ability to predict the productivity and ecosystem service production potential offered by different feedstock types grown on different soil types, in different climatic regions, and under different management practices. Therefore, a major objective of the Sustainability Theme of the Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), for which Dr. Yang is the Deputy Leader, is to improve our mechanistic understanding of how plant, soil, microbe, and climate interactions mediate bioenergy crop productivity and ecosystem service production related to carbon and nitrogen biogeochemistry. CABBI launched on December 1, 2017, so stay tuned for more details!

Funding: U.S. Department of Energy