
Contact Information
505 S. Goodwin Ave
Urbana, IL 61801
Research Areas
Research Interests
How do genomes change over time? In particular, we want to examine how the architecture of a genome changes in response to major evolutionary events — what architectural changes occur in a genome seeding an invasive species, or a genome underlying a large, long-term species radiation?
Additional Campus Affiliations
Associate Professor, Evolution, Ecology, and Behavior
Affiliate, Carl R. Woese Institute for Genomic Biology
External Links
Highlighted Publications
Rivera-Colón, A. G., Rayamajhi, N., Fazal Minhas, B., Madrigal, G., Bilyk, K. T., Yoon, V., Hüne, M., Gregory, S., Cheng, C-H. C., & Catchen, J. M. (2023). Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish. Molecular biology and evolution, 40(3), Article msad029. https://doi.org/10.1093/molbev/msad029
Minhas, B. F., Beck, E. A., Cheng, C. H. C., & Catchen, J. (2023). Novel mitochondrial genome rearrangements including duplications and extensive heteroplasmy could underlie temperature adaptations in Antarctic notothenioid fishes. Scientific reports, 13(1), Article 6939. https://doi.org/10.1038/s41598-023-34237-1
Rochette, N. C., Rivera-Colón, A. G., Walsh, J., Sanger, T. J., Campbell-Staton, S. C., & Catchen, J. M. (2023). On the causes, consequences, and avoidance of PCR duplicates: Towards a theory of library complexity. Molecular ecology resources, 23(6), 1299-1318. https://doi.org/10.1111/1755-0998.13800
Rivera-Colón, A. G., & Catchen, J. (2022). Population Genomics Analysis with RAD, Reprised: Stacks 2. In Methods in Molecular Biology (pp. 99-149). (Methods in Molecular Biology; Vol. 2498). Humana Press Inc.. https://doi.org/10.1007/978-1-0716-2313-8_7
Recent Publications
Cheng, C-H. C., Rivera-Colón, A. G., Minhas, B. F., Wilson, L., Rayamajhi, N., Vargas-Chacoff, L., & Catchen, J. M. (2023). Chromosome-Level Genome Assembly and Circadian Gene Repertoire of the Patagonia Blennie Eleginops maclovinus—The Closest Ancestral Proxy of Antarctic Cryonotothenioids. Genes, 14(6), Article 1196. https://doi.org/10.3390/genes14061196
de Flamingh, A., Rivera-Colón, A. G., Gnoske, T. P., Kerbis Peterhans, J. C., Catchen, J., Malhi, R. S., & Roca, A. L. (2023). Numt Parser: automated identification and removal of nuclear mitochondrial pseudogenes (numts) for accurate mitochondrial genome reconstruction in Panthera. Journal of Heredity, 114(2), 120-130. Article esac065. https://doi.org/10.1093/jhered/esac065
Minhas, B. F., Beck, E. A., Cheng, C. H. C., & Catchen, J. (2023). Novel mitochondrial genome rearrangements including duplications and extensive heteroplasmy could underlie temperature adaptations in Antarctic notothenioid fishes. Scientific reports, 13(1), Article 6939. https://doi.org/10.1038/s41598-023-34237-1
Rivera-Colón, A. G., Rayamajhi, N., Fazal Minhas, B., Madrigal, G., Bilyk, K. T., Yoon, V., Hüne, M., Gregory, S., Cheng, C-H. C., & Catchen, J. M. (2023). Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish. Molecular biology and evolution, 40(3), Article msad029. https://doi.org/10.1093/molbev/msad029
Rochette, N. C., Rivera-Colón, A. G., Walsh, J., Sanger, T. J., Campbell-Staton, S. C., & Catchen, J. M. (2023). On the causes, consequences, and avoidance of PCR duplicates: Towards a theory of library complexity. Molecular ecology resources, 23(6), 1299-1318. https://doi.org/10.1111/1755-0998.13800